If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+50X-522=0
a = 1; b = 50; c = -522;
Δ = b2-4ac
Δ = 502-4·1·(-522)
Δ = 4588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4588}=\sqrt{4*1147}=\sqrt{4}*\sqrt{1147}=2\sqrt{1147}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-2\sqrt{1147}}{2*1}=\frac{-50-2\sqrt{1147}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+2\sqrt{1147}}{2*1}=\frac{-50+2\sqrt{1147}}{2} $
| -6j+j+19j=14 | | 9j+j-j-7j-j=17 | | 2/x-5=5x-7 | | 50t2+14=0 | | 5b+b-4b-b=14 | | 5x+34-3x=200 | | 7u=8+3u | | 32+6n2=98n | | 9d-2d=14 | | 16y-9y+-11y=-4 | | 10=7u-8 | | 16y-9y+-11y=-4y | | 131(t)=16t^2+96t+3 | | 16y−9y+-11y=-4 | | 5y-3y-2y+3y=12 | | 18g-5g+4g-2g-14g=7 | | 4(m-7+2m=2 | | 19a+2a+2a-18a+4a=18 | | 12h-10h-h=6 | | 12j-11j=15 | | 11n—9=171-n | | 6y-9-2y-5=8y+17-4y | | 50+x5.50=18.50+x7.75 | | 12j−11j=15 | | 10j-8j=8 | | 18=3(y-4)+2y | | 16=6+2u | | 2x3–5x2–12x=0 | | 17x-10=34-5x | | 36=-4u+8(u+7) | | -3+y/3=-12 | | 4x^2-18x+2.5=0 |